Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Medicine (Baltimore) ; 100(36): e26855, 2021 Sep 10.
Article in English | MEDLINE | ID: covidwho-2191052

ABSTRACT

ABSTRACT: Coronavirus disease (COVID-19) has spread worldwide. X-ray and computed tomography (CT) are 2 technologies widely used in image acquisition, segmentation, diagnosis, and evaluation. Artificial intelligence can accurately segment infected parts in X-ray and CT images, assist doctors in improving diagnosis efficiency, and facilitate the subsequent assessment of the severity of the patient infection. The medical assistant platform based on machine learning can help radiologists make clinical decisions and helper in screening, diagnosis, and treatment. By providing scientific methods for image recognition, segmentation, and evaluation, we summarized the latest developments in the application of artificial intelligence in COVID-19 lung imaging, and provided guidance and inspiration to researchers and doctors who are fighting the COVID-19 virus.


Subject(s)
COVID-19/diagnostic imaging , Machine Learning , Pneumonia, Viral/diagnostic imaging , SARS-CoV-2 , Humans , Radiography , Tomography, X-Ray Computed
2.
Front Med (Lausanne) ; 9: 989950, 2022.
Article in English | MEDLINE | ID: covidwho-2065580

ABSTRACT

Observational data from China, the United States, France, and Italy suggest that chronological age is an adverse COVID-19 outcome risk factor, with older patients having a higher severity and mortality rate than younger patients. Most studies have gotten the same view. However, the role of aging in COVID-19 adverse effects is unclear. To more accurately assess the effect of aging on adverse COVID-19, we conducted this bidirectional Mendelian randomization (MR) study. Epigenetic clocks and telomere length were used as biological indicators of aging. Data on epigenetic age (PhenoAge, GrimAge, Intrinsic HorvathAge, and HannumAge) were derived from an analysis of biological aging based on genome-wide association studies (GWAS) data. The telomere length data are derived from GWAS and the susceptibility and severity data are derived from the COVID-19 Host Genetics Initiative (HGI). Firstly, epigenetic age and telomere length were used as exposures, and following a screen for appropriate instrumental variables, we used random-effects inverse variance weighting (IVW) for the main analysis, and combined it with other analysis methods (e.g., MR Egger, Weighted median, simple mode, Weighted mode) and multiple sensitivity analysis (heterogeneity analysis, horizontal multiplicity analysis, "leave-one-out" analysis). For reducing false-positive rates, Bonferroni corrected significance thresholds were used. A reverse Mendelian randomization analysis was subsequently performed with COVID-19 susceptibility and severity as the exposure. The results of the MR analysis showed no significant differences in susceptibility to aging and COVID-19. It might suggest that aging is not a risk factor for COVID-19 infection (P-values are in the range of 0.05-0.94). According to the results of our analysis, we found that aging was not a risk factor for the increased severity of COVID-19 (P > 0.05). However, severe COVID-19 can cause telomere lengths to become shorter (beta = -0.01; se = 0.01; P = 0.02779). In addition to this, severe COVID-19 infection can slow the acceleration of the epigenetic clock "GrimAge" (beta = -0.24, se = 0.07, P = 0.00122), which may be related to the closely correlation of rs35081325 and COVID-19 severity. Our study provides partial evidence for the causal effects of aging on the susceptibility and severity of COVID-19.

3.
PLoS One ; 17(6): e0269386, 2022.
Article in English | MEDLINE | ID: covidwho-1910661

ABSTRACT

BACKGROUND: There is growing evidence of a strong relationship between COVID-19 and myocarditis. However, there are few bioinformatics-based analyses of critical genes and the mechanisms related to COVID-19 Myocarditis. This study aimed to identify critical genes related to COVID-19 Myocarditis by bioinformatic methods, explore the biological mechanisms and gene regulatory networks, and probe related drugs. METHODS: The gene expression data of GSE150392 and GSE167028 were obtained from the Gene Expression Omnibus (GEO), including cardiomyocytes derived from human induced pluripotent stem cells infected with SARS-CoV-2 in vitro and GSE150392 from patients with myocarditis infected with SARS-CoV-2 and the GSE167028 gene expression dataset. Differentially expressed genes (DEGs) (adjusted P-Value <0.01 and |Log2 Fold Change| ≥2) in GSE150392 were assessed by NetworkAnalyst 3.0. Meanwhile, significant modular genes in GSE167028 were identified by weighted gene correlation network analysis (WGCNA) and overlapped with DEGs to obtain common genes. Functional enrichment analyses were performed by using the "clusterProfiler" package in the R software, and protein-protein interaction (PPI) networks were constructed on the STRING website (https://cn.string-db.org/). Critical genes were identified by the CytoHubba plugin of Cytoscape by 5 algorithms. Transcription factor-gene (TF-gene) and Transcription factor-microRibonucleic acid (TF-miRNA) coregulatory networks construction were performed by NetworkAnalyst 3.0 and displayed in Cytoscape. Finally, Drug Signatures Database (DSigDB) was used to probe drugs associated with COVID-19 Myocarditis. RESULTS: Totally 850 DEGs (including 449 up-regulated and 401 down-regulated genes) and 159 significant genes in turquoise modules were identified from GSE150392 and GSE167028, respectively. Functional enrichment analysis indicated that common genes were mainly enriched in biological processes such as cell cycle and ubiquitin-protein hydrolysis. 6 genes (CDK1, KIF20A, PBK, KIF2C, CDC20, UBE2C) were identified as critical genes. TF-gene interactions and TF-miRNA coregulatory network were constructed successfully. A total of 10 drugs, (such as Etoposide, Methotrexate, Troglitazone, etc) were considered as target drugs for COVID-19 Myocarditis. CONCLUSIONS: Through bioinformatics method analysis, this study provides a new perspective to explore the pathogenesis, gene regulatory networks and provide drug compounds as a reference for COVID-19 Myocarditis. It is worth highlighting that critical genes (CDK1, KIF20A, PBK, KIF2C, CDC20, UBE2C) may be potential biomarkers and treatment targets of COVID-19 Myocarditis for future study.


Subject(s)
COVID-19 , Induced Pluripotent Stem Cells , MicroRNAs , Myocarditis , COVID-19/genetics , Computational Biology/methods , Gene Expression Profiling/methods , Gene Expression Regulation, Neoplastic , Gene Regulatory Networks , Humans , Induced Pluripotent Stem Cells/metabolism , MicroRNAs/genetics , Myocarditis/genetics , Protein Interaction Maps/genetics , SARS-CoV-2/genetics , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL